

Isoelectric point (IEP)

e.g. pH of milk 6.6 (casein IEP=4.6)

- It is pH at which zwitterion concentration at maximum
- It has been used for determination of protein and amino acids.
- The molecules have ----- solubility at IEP.
- The net charge of a molecule at its IEP is -----.
- Charge of a molecule at pH above its IEP is -----and below is -----

15

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Solutions containing Strong acids

Strong acid concentration of H is equal to initial concentration of acid.

Solutions containing Only a Weak Acid

$$[H_3O^+] = \sqrt{K_aC_a}$$

EXAMPLE 7-12

Calculate pH

Calculate the pH of a 0.01 M solution of salicylic acid, which has a $K_a = 1.06 \times 10^{-3}$ at 25°C.

(a) Using equation (7-102), we find

$$[H_3O^+] = \sqrt{(1.06 \times 10^{-3}) \times (1.0 \times 10^{-2})}$$

= 3.26 × 10⁻³ M

pH=2.48

EXAMPLE 7-13

Calculate pH

Calculate the pH of a 1-g/100 mL solution of ephedrine sulfate. The molecular weight of the salt is 428.5, and K_h for ephedrine base is 2.3×10^{-5} .

(a) The ephedrine sulfate, (BH⁺)₂SO₄, dissociates completely into two BH⁺ cations and one SO₄²⁻ anion. Thus, the concentration of the weak acid (ephedrine cation) is twice the concentration, C_x, of the salt added.

$$C_0 = \frac{2C_1}{428.5} = \frac{2 \times 10 \text{ g/liter}}{428.5 \text{ g/mole}} = 4.67 \times 10^{-2} \text{ M}$$

(b)
$$K_0 = \frac{1.00 \times 10^{-14}}{2.3 \times 10^{-5}} = 4.35 \times 10^{-10}$$

(c)
$$[H_3O^+] = \sqrt{(4.35 \times 10^{-10}) \times (4.67 \times 10^{-2})}$$

= $4.51 \times 10^{-6} \text{ M}$

All assumptions are valid. We have

$$pH = -\log(4.51 \times 10^{-6}) = 5.35$$

17

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Solutions Containing Only a Weak Base

$$[H_3O^+] = \sqrt{\frac{K_a K_w}{C_b}}$$

EXAMPLE 7-14

$[OH] = \sqrt{K_b C_b}$

Calculate pH

What is the pH of a 0.0033 M solution of cocaine base, which has a basicity constant of 2.6×10^{-6} ? We have

$$[OH^-] = \sqrt{(2.6 \times 10^{-6}) \times (3.3 \times 10^{-5})}$$

= $9.26 \times 10^{-5} M$

All assumptions are valid. Thus,

$$pOH = -\log(9.26 \times 10^{-5}) = 4.03$$

 $pH = 14.00 - 4.03 = 9.97$

Solutions Containing a Single Conjugate Acid-Base Pair

$$[H_3O^+] = \frac{K_aC_a}{C_b}$$

EXAMPLE 7-16

Calculate pH

What is the pH of a solution containing acetic acid 0.3 M and sodium acetate 0.05 M? We write

$$[H_3O^+] = \frac{(1.75 \times 10^{-5}) \times (0.3)}{5.0 \times 10^{-2}}$$

= 1.05 × 10⁻⁴ M

All assumptions are valid. Thus,

$$pH = -\log(1.05 \times 10^{-4}) = 3.98$$

19

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

EXAMPLE 7-17

Calculate pH

What is the pH of a solution containing ephedrine 0.1 M and ephedrine hydrochloride 0.01 M? Ephedrine has a basicity constant of 2.3×10^{-5} ; thus, the acidity constant for its conjugate acid is 4.35×10^{-10} .

$$\begin{split} [H_3O^+] &= \frac{(4.35 \times 10^{-10}) \times (1.0 \times 10^{-2})}{1.0 \times 10^{-1}} \\ &= 4.35 \times 10^{-11} \text{ M} \end{split}$$

All assumptions are valid. Thus,

$$pH = -\log(4.35 \times 10^{-11}) = 10.36$$

Solutions Containing Two Weak Acids

$$[H_3O^+] = \sqrt{K_1C_{a1} + K_2C_{a2}}$$

EXAMPLE 7-21

Calculate pH

What is the pH of a solution containing acetic acid, 0.01 mole/liter, and formic acid, 0.001 mole/liter? We have

$$\begin{split} [H_3O^+] &= \sqrt{(1.75\times 10^{-5})(1.0\times 10^{-2}) + (1.77\times 10^{-4})(1.0\times 10^{-3})} \\ &= 5.93\times 10^{-4} \text{ M} \\ pH &= -\log(5.93\times 10^{-4}) = 3.23 \end{split}$$

21

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Solutions Containing a Salt of a Weak Acidand a Weak Base

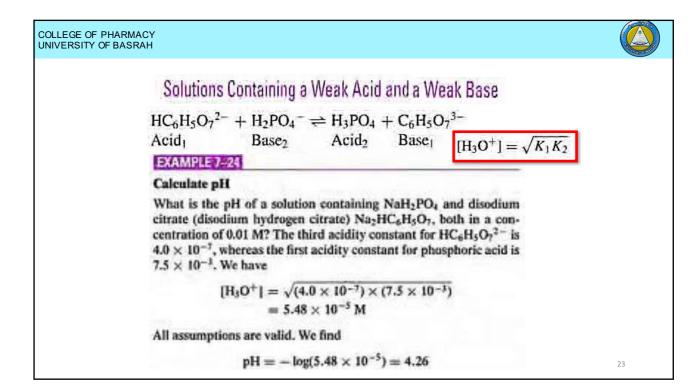
$$[H_3O^+] = \sqrt{K_1K_2}$$

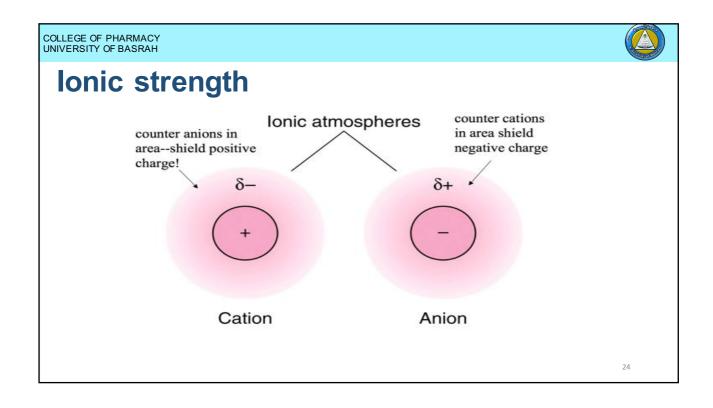
$$NH_4^+ + AC^- \rightleftharpoons HAc + NH_3$$

 $Acid_1 \quad Base_2 \quad Acid_2 \quad Base_1$

EXAMPLE 7-22

Calculate pH


Calculate the pH of a 0.01 M solution of ammonium acetate. The acidity constant for acetic acid is $K_2=K_a=1.75\times 10^{-5}$, and the basicity constant for ammonia is $K_b=1.74\times 10^{-5}$.


(a) K₁ can be found by dividing K_b for ammonia into K_w:

$$K_1 = \frac{1.00 \times 10^{-14}}{1.74 \times 10^{-5}} = 5.75 \times 10^{-10}$$

 $[H_3O^+] = \sqrt{(5.75 \times 10^{-10}) \times (1.75 \times 10^{-5})}$
 $= 1.00 \times 10^{-7} \text{ M}$

Note that all of the assumptions are valid. We have

$$pH = -\log(1.00 \times 10^{-7}) = 7.00$$

Effect of Ionic Strength on Acidity Constants

$$K = \frac{\alpha_{\text{H}_3\text{O}} + \alpha_{\text{B}}}{\alpha_{\text{HB}}} = \frac{[\text{H}_3\text{O}^+][\text{B}]}{[\text{HB}]} \cdot \frac{\gamma_{\text{H}_3}\text{O}^+\gamma_{\text{B}}}{\gamma_{\text{HB}}}$$

For monotropic molecule

$$pK' = pK + \frac{0.51(2Z - 1)\sqrt{\mu}}{1 + \sqrt{\mu}}$$

For zwitterion molecule

$$pK'_1 = pK_1 + \frac{0.51\sqrt{\mu}}{1+\sqrt{\mu}} - K_t\mu$$

$$pK_2' = pK_2 - \frac{0.51\sqrt{\mu}}{1 + \sqrt{\mu}} + K_r\mu$$

K_r=Salting in constant=0.32 for amino acid in water

25

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

EXAMPLE 7-27

Calculate pH

Calculate the pH of a 0.1 M solution of acetic acid to which enough KCl had been added to give an ionic strength of 0.1 M at 25°C. The pK₂ for acetic acid is 4.76.

(a)
$$pK'_a = 4.76 - \frac{0.51\sqrt{0.10}}{1 + \sqrt{0.10}}$$
$$= 4.76 - 0.12 = 4.64$$

(b) Taking logarithms of equation (7-99) gives

$$pH = \frac{1}{2}(pK_a' - \log C_a)$$

in which we now write pKa as pK'a:

$$pH = \frac{1}{2}(4.64 + 2.00) = 3.32$$

EXAMPLE 7-28

Calculate pH

Calculate the pH of a 10^{-3} M solution of glycine at an ionic strength of 0.10 at 25°C. The p K_k values for glycine are p $K_1 = 2.35$ and p $K_2 = 9.78$.

(a)
$$pK'_1 = 2.35 + \frac{0.51\sqrt{0.10}}{1 + \sqrt{0.10}} - 0.32(0.10)$$
$$= 2.35 + 0.12 - 0.03 = 2.44$$

(b)
$$pK'_2 = 9.78 - \frac{0.51\sqrt{0.10}}{1 + \sqrt{0.10}} + 0.32(0.10)$$

= $9.78 - 0.12 + 0.03 = 9.69$

(c) Taking logarithms of equation (7-118) gives

$$pH = \frac{1}{2}(pK_1 + pK_2)$$
$$= \frac{1}{2}(2.44 + 9.69) = 6.07$$

27

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Thanks for your attention

